Atomistic Model for Nearly Quantitative Simulations of Langmuir Monolayers
نویسندگان
چکیده
منابع مشابه
Atomistic Model for Nearly Quantitative Simulations of Langmuir Monolayers.
Lung surfactant and a tear film lipid layer are examples of biologically relevant macromolecular structures found at the air-water interface. Because of their complexity, they are often studied in terms of simplified lipid layers, the simplest example being a Langmuir monolayer. Given the profound biological significance of these lipid assemblies, there is a need to understand their structure a...
متن کاملCollapse mechanisms of Langmuir monolayers.
When a two-dimensional (2D) film is compressed to its stability limit, it explores the third dimension via collapse. Understanding this 2D-to-3D transition is of great importance as it provides insight into the origin of defects in thin films. This review draws attention to a reversible folding collapse first discovered in model lung surfactant systems and explores the driving forces for this m...
متن کاملMagnetic Needle Viscometer for Langmuir Monolayers
We have built a magnetic needle viscometer capable of measuring the surface shear viscosity of Langmuir monolayers at constant surface pressure or molecular area. A Langmuir trough with dual symmetrical compression/expansion barriers is positioned between two electromagnetic coils that create a homogeneous magnetic field gradient. The gradient drives a Teflon-encapsulated magnetic needle floati...
متن کاملAtomistic spin model simulations of magnetic nanomaterials.
Atomistic modelling of magnetic materials provides unprecedented detail about the underlying physical processes that govern their macroscopic properties, and allows the simulation of complex effects such as surface anisotropy, ultrafast laser-induced spin dynamics, exchange bias, and microstructural effects. Here we present the key methods used in atomistic spin models which are then applied to...
متن کاملQuantitative atomistic simulations of reactive and non-reactive processes.
The interpretation of physico-chemical observables in terms of atomic motions is one of the primary objectives of atomistic simulations. Trajectories from a molecular simulation contain much valuable information about the relationship between motion of the atoms and physical observables related to them, provided that the interactions used to generate the trajectories are of sufficiently high qu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Langmuir
سال: 2017
ISSN: 0743-7463,1520-5827
DOI: 10.1021/acs.langmuir.7b02855